词 语 解 释
词语: 牛顿—莱布尼茨公式
词语解释: 在牛顿1665年5月20日(格里历31日)手写的一页文件中,有微积分的最早记载,但他的工作长久没有人知道,直到1687年才用几何的形式摘记在他的名著《自然哲学的数学原理》中。牛顿建立微积分主要从运动学的观点出发,而莱布尼茨则是从几何学的角度去考虑。特别和巴罗的“微分三角形”有密切关系。莱布尼茨第一篇微分学的文章1684年在《学艺》上发表,第一篇积分学的文章1686年在同一杂志发表。他所创设的符号远优于牛顿,故为后世所沿用。它的理论很快就得到洛必达、伯努利家族和欧拉等人的继承和发扬光大,到18世纪进入了一个丰收的时期。牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。因此,在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。牛顿、莱布尼茨的最大功劳是将两个貌似不相关的问题联系起来,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题),建立起两者之间的桥梁,用微积分基本定理或者“牛顿—莱布尼茨公式”表达出来。任何一项重大发明,都不可能一开始便完整无瑕。17世纪的微积分带有严重的逻辑困难,以致受到多方面的非议。它的基础是极限论,而牛顿、莱布尼茨的极限观念是十分模糊的。究竟极限是什么,无穷小是什么,这在当时是带有根本性质的难题。尽管如此,微积分在实践方面的胜利,足以令人信服。大多数数学家暂时搁下逻辑基础不顾,勇往直前地去开拓这个新的园地。