位置:第三章第二节
|
美国著名心理学家、教育家布鲁纳就是其中较典型的代表,他提出了“新学科中心派中心结构课程论”,既“结构”课程论。 针对科学技术的突飞猛进、人类知识总量的成倍增长、知识更新的周期越来越短的现状,布鲁纳指出,任何一门学科都不能把该学科中的所有知识都摆到教学大纲中去,因此,最好的办法是让学生掌握没门学科的最基本的结构。布鲁纳的“结构”课程论的主要思想是:(1)革新课程内容,力求现代化。着重教授每门学科的基本结构。(2)选择螺旋式编排课程,打通大学、中学和小学在同一学科中的界限,强调基本学科的早期学习。(3)广泛采用发现法,注意发展学生的直觉思维能力,培养学生对学习材料本身的兴趣。 所谓学科的基本结构,就是最能反映该学科本质的基本概念、原理和规则。如数学中的交换律、分配律和结合律等。布鲁纳说,代数就是把已知数和未知数用等式排列起来,使得未知数称为可知的一种方法。接着写方程所运用的就是交换律、结合律和分配律这三个基本法则。学生掌握了这些法则,碰上“新”方程时就能看出它不过是他所熟悉的方程的一种变式,这样“新”方程便迎刃而解了。 学习学科基本结合的意义在于:(1)懂得学科的基本结构,可使学生更容易理解该学科,可激发学生的学习智慧和兴趣。(2)可帮助记忆。研究表明,要记住一个东西除非把它放进构造的很好的模型里,否则很快就会遗忘。学习普遍的或基本原理的目的,就在于不是记忆的内容全部丧失。(3)领会基本原理是通向“训练迁移”的大道。 在布鲁纳的“结构”课程理论的指导下,数学中导致了一场影响深远的课程改革运动——“新数学”运动。他的学科基本结构的思想在现在的数学课程中还有所反映。 通过上面对课程改革的简单回顾,进一步证实了前面对影响课程设置的因素的分析。课程改革和当时社会的需要分不开的。同时还可以看出,数学始终是课程改革的一个重要方面。
二、近年来美、英、日数学课程的改革 第二次世界大战之后,随着包括计算技术在内的现代科学技术的迅速发展,数学的应用领域得到了极大的拓展,各行各业都用到数学,就像今天识字、阅读一样,数学成为公民必需的文化修养,数学教育大众化是时代的要求。同时,科学技术迅猛发展,特别是计算机技术的飞速发展,冲击着原来数学课程与教学模式,数学教育的目的、内容重点和教学手段等诸多方面都出现了新的变化。因此,各国都在进行数学教育的改革。 1、美国的数学课程改革 1989年,美国国家研究委员会(NRC)发表了《休戚与共——关于数学教育失败向全国所作的报告》,文件提出了数学课程必须作出重大的改革。国家教学教师协会(NCTM)作为美国数学教育的改革倡导者,先后建立教学、教师、考核三个方面的标准,为改进数学课程作出了很大的贡献。 (1)NCTM数学课程标淮 |