征和建模目的。有人说,进行假设的目的就在于在第一步中列出的各种因素中选出主要因素,忽略非本质因素,即使问题简化以便进行数学处理,又抓住了问题的本质,是不无道理的。另外,为建模顺利,写出假设时,语言要准确,就象作习题时写出已知条件一样。所有这些就是模型假设这一步要做的工作。易见,问题分析与模型假设的重要地位。以下,我们结合例子给予说明。 |
例 1 (方桌问题)日常生活中经常碰到这样的事情:把方桌置于地面上时,常常是只有三只脚着地而放不稳,通常需要调整几次方可将方桌放稳,试用数学语言对此问题给以表述,并用数学工具给予说明:方桌能否在地面上放稳?若能,请给予证明并给出做法,否则说明理由。
我们来看看这个似乎与数学毫无关系的实际问题怎样一步步转化为数学问题,并用数学工具给以证明的。
问题分析
 |
所谓方桌能否在地面放稳是指方桌的四个脚能否同时着地,而四个桌脚是否同时着地是指四个桌脚与地面的距离是否同时为零。于是我们可以转而研究四个桌脚与地面的距离是否同时等于零。这个距离显然是变化的,于是可视为函数,那么作为函数,它随哪个量的改变而改变? 构造这个距离函数成为主要建模目的。
|
为了构造函数和设定相关参数,让我们实际操作一下,从中搜集信息,弄清其特征 (这也是建模中常用的策略)。要想四个桌脚同时着地,通常有两种方法,其一是将方桌搬离原地,换个位置试验,另一个做法是在原地进行旋转试验。