当前位置:课堂首页 >> 课程导航 >> 1.3.5 建模实例[3]
 
 

,则得

按假设, 为常数 ,再设开始时的人口数为 ,便构成一个初值问题

此即著名的 马尔萨斯 人口(指数)增长模型。

模型求解
    此为一阶可分离变量方程的初值问题,很容易求得其解为

                                                          (1.16)
    模型分析、评价与检验

考虑二百多年来人口增长的实际情况。1961 年世界人口总数为,在 1961-1970 年这段时间内,每年平均的人口增长率为 2%,代入(1.16)式可写为

                                  (1.17)
用这个模型进行短期预报可获得相应的人口统计数据,且相当准确。但利用(1.17) 式对 1961 年后
的世界人口进行预测,则会得出令人不能理解的结论:当 年时,,即
达到 4400 万亿人,这相当于地球上每平方米要容纳至少 20 人。
 
 
本节第 [1] [2]  3  [4] [5] [6] [7] >> 部分